Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Haystack and Owens Valley Radio Observatory observations recently revealed strong, intermittent, sinusoidal total flux-density variations that maintained their coherence between 1975 and 2021 in the blazar PKS 2131−021 (z= 1.283). This was interpreted as possible evidence of a supermassive black hole binary (SMBHB). Extended observations through 2023 show a coherence over 47.9 yr, with an observed periodP15 GHz= (1739.8 ± 17.4) days. We reject, withp-value = 2.09 × 10−7, the hypothesis that the variations are due to random fluctuations in the red noise tail of the power spectral density. There is clearly a physical phenomenon in PKS 2131−021 producing coherent sinusoidal flux-density variations. We find the coherent sinusoidal intensity variations extend from below 2.7 GHz to optical frequencies, from which we derive an observed periodPoptical= (1764 ± 36) days. Across this broad frequency range, there is a smoothly varying monotonic phase shift in the sinusoidal variations with frequency. Hints of periodic variations are also observed atγ-ray energies. The importance of well-vetted SMBHB candidates to searches for gravitational waves is pointed out. We estimate the fraction of blazars that are SMBHB candidates to be >1 in 100. Thus, monitoring programs covering tens of thousands of blazars could discover hundreds of SMBHB candidates.more » « lessFree, publicly-accessible full text available May 14, 2026
- 
            Abstract This paper addresses, for the first time, a key aspect of the phenomenology of compact symmetric objects (CSOs): the characteristics of their radio spectra. We present a radio-spectrum description of a complete sample of high-luminosity CSOs (CSO-2s), which shows that they exhibit the complete range of spectral types, including flat-spectrum sources (α≥ −0.5), steep-spectrum sources (α< −0.5), and peaked-spectrum sources. We show that there is no clear correlation between spectral type and size, but there is a correlation between the high-frequency spectral index and both object type and size. We also show that, to avoid biasing the data and to understand the various classes of active galactic nuclei (AGN) involved, the complete range of spectral types should be included in studying the general phenomenology of compact jetted AGN, and that complete samples must be used, selected over a wide range of frequencies. We discuss examples that demonstrate these points. We find that the high-frequency spectral indices of CSO-2s span −1.3 <αhi< −0.3 and hence that radio spectral signatures cannot be used to discriminate definitively between CSO-2s, binary galactic nuclei, and millilensed objects, unless they haveαhi> −0.3.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Context.The nearby elliptical galaxy M87 contains one of only two supermassive black holes whose emission surrounding the event horizon has been imaged by the Event Horizon Telescope (EHT). In 2018, more than two dozen multi-wavelength (MWL) facilities (from radio toγ-ray energies) took part in the second M87 EHT campaign. Aims.The goal of this extensive MWL campaign was to better understand the physics of the accreting black hole M87*, the relationship between the inflow and inner jets, and the high-energy particle acceleration. Understanding the complex astrophysics is also a necessary first step towards performing further tests of general relativity. Methods.The MWL campaign took place in April 2018, overlapping with the EHT M87* observations. We present a new, contemporaneous spectral energy distribution (SED) ranging from radio to very high-energy (VHE)γ-rays as well as details of the individual observations and light curves. We also conducted phenomenological modelling to investigate the basic source properties. Results.We present the first VHEγ-ray flare from M87 detected since 2010. The flux above 350 GeV more than doubled within a period of ≈36 hours. We find that the X-ray flux is enhanced by about a factor of two compared to 2017, while the radio and millimetre core fluxes are consistent between 2017 and 2018. We detect evidence for a monotonically increasing jet position angle that corresponds to variations in the bright spot of the EHT image. Conclusions.Our results show the value of continued MWL monitoring together with precision imaging for addressing the origins of high-energy particle acceleration. While we cannot currently pinpoint the precise location where such acceleration takes place, the new VHEγ-ray flare already presents a challenge to simple one-zone leptonic emission model approaches, and it emphasises the need for combined image and spectral modelling.more » « lessFree, publicly-accessible full text available December 1, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
